Example Architectural Decision – ESXi Host Hardware Sizing (Example 1)

Problem Statement

What is the most suitable hardware specifications for this environments ESXi hosts?

Requirements

1. Support Virtual Machines of up to 16 vCPUs and 256GB RAM
2. Achieve up to 400% CPU overcommitment
3. Achieve up to 150% RAM overcommitment
4. Ensure cluster performance is both consistent & maximized
5. Support IP based storage (NFS & iSCSI)
6. The average VM size is 1vCPU / 4GB RAM
7. Cluster must support approx 1000 average size Virtual machines day 1
8. The solution should be scalable beyond 1000 VMs (Future-Proofing)
9. N+2 redundancy

Assumptions

1. vSphere 5.0 or later
2. vSphere Enterprise Plus licensing (to support Network I/O Control)
3. VMs range from Business Critical Application (BCAs) to non critical servers
4. Software licensing for applications being hosted in the environment are based on per vCPU OR per host where DRS “Must” rules can be used to isolate VMs to licensed ESXi hosts

Constraints

1. None

Motivation

1. Create a Scalable solution
2. Ensure high performance
3. Minimize HA overhead
4. Maximize flexibility

Architectural Decision

Use Two Socket Servers w/ >= 8 cores per socket with HT support (16 physical cores / 32 logical cores) , 256GB Ram , 2 x 10GB NICs

Justification

1. Two socket 8 core (or greater) CPUs with Hyper threading will provide flexibility for CPU scheduling of large numbers of diverse (vCPU sized) VMs to minimize CPU Ready (contention)

2. Using Two Socket servers of the proposed specification will support the required 1000 average sized VMs with 18 hosts with 11% reserved for HA to meet the required N+2 redundancy.

3. A cluster size of 18 hosts will deliver excellent cluster (DRS) efficiency / flexibility with minimal overhead for HA (Only 11%) thus ensuring cluster performance is both consistent & maximized.

4. The cluster can be expanded with up to 14 more hosts (to the 32 host cluster limit) in the event the average VM size is greater than anticipated or the customer experiences growth

5. Having 2 x 10GB connections should comfortably support the IP Storage / vMotion / FT and network data with minimal possibility of contention. In the event of contention Network I/O Control will be configured to minimize any impact (see Example VMware vNetworking Design w/ 2 x 10GB NICs)

6. RAM is one of the most common bottlenecks in a virtual environment, with 16 physical cores and 256GB RAM this equates to 16GB of RAM per physical core. For the average sized VM (1vCPU / 4GB RAM) this meets the CPU overcommitment target (up to 400%) with no RAM overcommitment to minimize the chance of RAM becoming the bottleneck

7. In the event of a host failure, the number of Virtual machines impacted will be up to 64 (based on the assumed average size VM) which is minimal when compared to a Four Socket ESXi host which would see 128 VMs impacted by a single host outage

8. If using Four socket ESXi hosts the cluster size would be approx 10 hosts and would require 20% of cluster resources would have to be reserved for HA to meet the N+2 redundancy requirement. This cluster size is less efficient from a DRS perspective and the HA overhead would equate to higher CapEx and as a result lower the ROI

9. The solution supports Virtual machines of up to 16 vCPUs and 256GB RAM although this size VM would be discouraged in favour of a scale out approach (where possible)

10. The cluster aligns with a virtualization friendly “Scale out” methodology

11. Using smaller hosts (either single socket, or less cores per socket) would not meet the requirement to support supports Virtual machines of up to 16 vCPUs and 256GB RAM , would likely require multiple clusters and require additional 10GB and 1GB cabling as compared to the Two Socket configuration

12. The two socket configuration allows the cluster to be scaled (expanded) at a very granular level (if required) to reduce CapEx expenditure and minimize waste/unused cluster capacity by adding larger hosts

13. Enabling features such as Distributed Power Management (DPM) are more attractive and lower risk for larger clusters and may result in lower environmental costs (ie: Power / Cooling)

Alternatives

1.  Use Four Socket Servers w/ >= 8 cores per socket , 512GB Ram , 4 x 10GB NICs
2.  Use Single Socket Servers w/ >= 8 cores , 128GB Ram , 2 x 10GB NICs
3. Use Two Socket Servers w/ >= 8 cores , 512GB Ram , 2 x 10GB NICs
4. Use Two Socket Servers w/ >= 8 cores , 384GB Ram , 2 x 10GB NICs
5. Have two clusters of 9 hosts with the recommended hardware specifications

Implications

1. Additional IP addresses for ESXi Management, vMotion, FT & Out of band management will be required as compared to a solution using larger hosts

2. Additional out of band management cabling will be required as compared to a solution using larger hosts

Related Articles

1. Example Architectural Decision – Network I/O Control for ESXi Host using IP Storage (4 x 10 GB NICs)

2. Example VMware vNetworking Design w/ 2 x 10GB NICs

3. Network I/O Control Shares/Limits for ESXi Host using IP Storage

4. VMware Clusters – Scale up for Scale out?

5. Jumbo Frames for IP Storage (Do not use Jumbo Frames)

6. Jumbo Frames for IP Storage (Use Jumbo Frames)

CloudXClogo

 

High Availability Admission Control Setting and Policy

High Availability Admission Control Setting and Policy

Problem Statement

In a self service IaaS cloud, the virtual machine numbers and compute requirements will likely vary significantly and without notice. The environment needs to achieve the maximum consolidation ratio possible without impacting the ability to provide redundancy at a minimum of

1. N+1 for clusters of up to 8 hosts
2. N+2 for clusters of >8 hosts but <=16
3. N+3 for clusters of >16 hosts but <=24
4. N+4 for clusters of >24 hosts but <=32

What is the most efficient HA admission control policy / setting and configuration for the vSphere cluster?

Assumptions

1. Virtual machine workloads will vary from small ie: 1 vCPU / 1GB RAM up to large VMs of >=8vCPU and >=64GB Ram
2. Redundancy is mandatory as per the problem statement
3. ESXi hosts can support the maximum VM size required by the offering
4. vSphere 5.0 or later is being used

Motivation

1. Ensure maximum consolidation ratios in the cluster
2. Ensure optimal compute resource utilization
3. Prevent HA overhead being increased by the potentially inefficient slot size based HA algorithms
4. Make maximum use of hardware investment

Alternatives

1. Use “Specify a fail over host”
2. Set “Host failure cluster tolerates” to 1, 2,3 or 4 depending on cluster size

Justification

1. Enabling admission control is critical to ensure the required level of availability
2. The admission control settings that rely on the Slot size based HA algorithms do not suit clusters with varying VM sizes
3. Percentage setting being rounded up adds minimal additional HA overhead and helps ensure performance in a HA event
4. Ensure maximum CPU scheduling efficiency by having all hosts within the cluster running virtual machines
5. Ensure optimal DRS flexibility by having all hosts within the cluster active to be able to run virtual machines

Architectural Decision

For the HA Admission control setting use “Enable – Do not power on virtual machines that violate availability constraints”

For the HA admission control policy use “Percentage of cluster resources reserved for HA” and set the percentage of cluster resources as per the below table.

Note: Percentage values that do not equate to a full number will be rounded up.

HAPercentages

Note: Check out this cool HA admission control percentage calculator by Samir Roshan of ThinkingLoudOnCloud

Implications

1. The Percentage of cluster resources reserved for HA uses VM level CPU and Memory reservations to calculate cluster capacity. If not reservations are set performance in the event of a failure may be impacted
2. The default Mhz reserved for HA is 32mhz per VM –  CPU Reservations should be considered for critical VMs to ensure performance is not significantly degraded in a HA event
3. The default memory reserved for HA is 0MB + VM overhead – Memory reservations should be considered for critical VMs to ensure performance is not significantly degraded in a HA event