Expanding Capacity on a Nutanix environment – Design Decisions

I recently saw an article about design decisions around expanding capacity for a HCI platform which went through the various considerations and made some recommendations on how to proceed in different situations.

While reading the article, it really made me think how much simpler this process is with Nutanix and how these types of areas are commonly overlooked when choosing a platform.

Let’s start with a few basics:

The Nutanix Acropolis Distributed Storage Fabric (ADSF) is made up of all the drives (SSD/SAS/SATA etc) in all nodes in the cluster. Data is written locally where the VM performing the write resides and replica’s are distributed based on numerous factors throughout the cluster. i.e.: No Pairing, HA pairs, preferred nodes etc.

In the event of a drive failure, regardless of what drive (SSD,SAS,SATA) fails, only that drive is impacted, not a disk group or RAID pack.

This is key as it limited the impact of the failure.

It is importaint to note, ADSF does not store large objects nor does the file system require tuning to stripe data across multiple drives/nodes. ADSF by default distributes the data (at a 1MB granularity) in the most efficient manner throughout the cluster while maintaining the hottest data locally to ensure the lowest overheads and highest performance read I/O.

Let’s go through a few scenarios, which apply to both All Flash and Hybrid environments.

  1. Expanding capacityWhen adding a node or nodes to an existing cluster, without moving any VMs, changing any configuration or making any design decisions, ADSF will proactively send replicas from write I/O to all nodes within the cluster, therefore improving performance while reactively performing disk balancing where a significant imbalance exists within a cluster.

    This might sound odd but with other HCI products new nodes are not used unless you change the stripe configuration or create new objects e.g.: VMDKs which means you can have lots of spare capacity in your cluster, but still experience an out of space condition.

    This is a great example of why ADSF has a major advantage especially when considering environments with large IO and/or capacity requirements.

    The node addition process only requires the administrator to enter the IP addresses and its basically a one click, capacity is available immediately and there is no mass movement of data. There is also no need to move data off and recreate disk groups or similar as these legacy concepts & complexities do not exist in ADSF.

    Nutanix is also the only platform to allow expanding of capacity via Storage Only nodes and supports VMs which have larger capacity requirements than a single node can provide. Both are supported out of the box with zero configuration required.

    Interestingly, adding storage only nodes also increases performance, resiliency for the entire cluster as well as the management stack including PRISM.

  2. Impact & implications to data reduction of adding new nodesWith ADSF, there are no considerations or implications. Data reduction is truely global throughout the cluster and regardless of hypervisor or if you’re adding Compute+Storage or Storage Only nodes, the benefits particularly of deduplication continue to benefit the environment.

    The net effect of adding more nodes is better performance, higher resiliency, faster rebuilds from drive/node failures and again with global deduplication, a higher chance of duplicate data being found and not stored unnecessarily on physical storage resulting in a better deduplication ratio.

    No matter what size node/s are added & no matter what Hypervisor, the benefits from data reduction features such as deduplication and compression work at a global level.

    What about Erasure Coding? Nutanix EC-X creates the most efficient stripe based on the cluster size, so if you start with a small 4 node cluster your stripe would be 2+1 and if you expand the cluster to 5 nodes, the stripe will automatically become 3+1 and if you expand further to 6 nodes or more, the stripe will become 4+1 which is currently the largest stripe supported.

  3. Drive FailuresIn the event of a drive failure (SSD/SAS or SATA) as mentioned earlier, only that drive is impacted. Therefore to restore resiliency, only the data on that drive needs to be repaired as opposed to something like an entire disk group being marked as offline.

    It’s crazy to think a single commodity drive failure in a HCI product could bring down an entire group of drives, causing a significant impact to the environment.

    With Nutanix, a rebuild is performed in a distributed manner throughout all nodes in the cluster, so the larger the cluster, the lower the per node impact and the faster the configured resiliency factor is restored to a fully resilient state.

At this point you’re probably asking, Are there any decisions to make?

When adding any node, compute+storage or storage only, ensure you consider what the impact of a failure of that node will be.

For example, if you add one 15TB storage only node to a cluster of nodes which are only 2TB usable, then you would need to ensure 15TB of available space to allow the cluster to fully self heal from the loss of the 15TB node. As such, I recommend ensuring your N+1 (or N+2) node/s are equal to the size of the largest node in the cluster from both a capacity, performance and CPU/RAM perspective.

So if your biggest node is an NX-8150 with 44c / 512GB RAM and 20TB usable, you should have an N+1 node of the same size to cover the worst case failure scenario of an NX-8150 failing OR have the equivalent available resources available within the cluster.

By following this one, simple rule, your cluster will always be able to fully self heal in the event of a failure and VMs will failover and be able to perform at comparable levels to before the failure.

Simple as that! No RAID, Disk group, deduplication, compression, failure, or rebuild considerations to worry about.


The above are just a few examples of the advantages the Nutanix ADSF provides compared to other HCI products. The operational and architectural complexity of other products can lead to additional risk, inefficient use of infrastructure, misconfiguration and ultimately an environment which does not deliver the business outcome it was originally design to.

Integrity of I/O for VMs on NFS Datastores – Part 2 – Forced Unit Access (FUA) & Write Through

This is the second part of this series and the focus of this post is to cover a critical requirement for many applications including MS SQL and MS Exchange (which is designed to work with Block based storage) to operate as designed and to ensure data integrity is support for Forced Unit Access (FUA) & Write Through.

As a reminder from the first post, this post is not talking about presenting NFS direct to Windows.

The key here is for the storage solution to honour the “Write-to-stable” media intent and not depend on potentially vulnerable caching/buffering solutions using non persistent media which may require battery backing.

Microsoft have a Knowledge base article relating to the requirements for SQL Server, which details the FUA & Write Through requirements, along with other requirements covered in this series which I would recommend reading.

Key factors to consider when evaluating third-party file cache systems with SQL Server

Forced Unit Access (FUA) & Write-Through is supported by VMware but even with this support, it is also a function of the underlying storage to honour the request and this process or even support may vary from storage vendor to storage vendor.

A key point here is this process is delivered by the VMDK at the hypervisor level and passed onto the underlying storage, so regardless of the protocol being Block (iSCSI/FCP) or File based (NFS) it is the responsibility of the storage solution once the I/O is passed to it from the hypervisor.

Where a write cache on non persistent media (ie: RAM) is used, the storage vendor needs to ensure that in the event of a power outage there is sufficient battery backing to enable the cache to be de-staged to persistent media (ie: SSD / SAS / SATA).

Some solutions use Mirrored Write Cache to attempt to mitigate the risk of power outages causing issues but this could be argued to be not in compliance with the FUA which intends the Write I/O to be committed to stable media BEFORE the I/O is acknowledged as written.

If the solution does not ensure data is written to persistent media, it is not compliant and applications requiring FUA & Write-Through will likely be impacted at some point.

As I work for a storage vendor, I wont go into detail about any other vendor, but I will have an upcoming post on how Nutanix is in compliance with FUA & Write-Through.

In part three, I will discuss Write Ordering.

Integrity of Write I/O for VMs on NFS Datastores Series

Part 1 – Emulation of the SCSI Protocol
Part 2 – Forced Unit Access (FUA) & Write Through
Part 3 – Write Ordering
Part 4 – Torn Writes
Part 5 – Data Corruption

Nutanix Specific Articles

Part 6 – Emulation of the SCSI Protocol (Coming soon)
Part 7 – Forced Unit Access (FUA) & Write Through (Coming soon)
Part 8 – Write Ordering (Coming soon)
Part 9 – Torn I/O Protection (Coming soon)
Part 10 – Data Corruption (Coming soon)

Related Articles

1. What does Exchange running in a VMDK on NFS datastore look like to the Guest OS?
2. Support for Exchange Databases running within VMDKs on NFS datastores (TechNet)
3. Microsoft Exchange Improvements Suggestions Forum – Exchange on NFS/SMB
4. Virtualizing Exchange on vSphere with NFS backed storage

Rule of Thumb: Sizing for Storage Performance in the new world.

In the new world where storage performance is decoupled with capacity with new read/write caching and Hyper-Converged solutions, I always get asked:

How do I size the caching or Hyper-Converged solution to ensure I get the storage performance I need.

Obviously I work for Nutanix, so this question comes from prospective or existing Nutanix customers, but its also relevant to other products in the market, such as PernixData or any Hybrid (SSD+SAS/SATA) solution.

So for indicative sizing (i.e.: Presales) where definitive information is not available and/or where you cannot conduct a detailed assessment , I use the following simple Rule of Thumb.

Take your last two monthly full backups, and take the delta between them and multiply that by 3.

So if my full backup from August was 10TB and my full backups from September is 11TB, my delta is 1TB. I then multiply that by 3 and we get 3TB which is our assumption of the “Active Working Set” or in basic terms, the data which needs performance. (Because cold or inactive data can sit on any tier without causing performance issues).

Now I  size my SSD tier for 3TB of usable capacity.

The next question is:

Why multiple the backup data delta by 3?

This is based on an assumption (since we don’t have any hard data to go on) that the Read/Write ratio is 70% Read, 30% write.

Now those of you familiar with this thing called Maths, would argue 70/30 is 2.33333 which is true. So rounding up to 3 is essentially a buffer.

I have found this rule of thumb works very well, and customers I have worked with have effectively had All Flash Array performance because the “Active Working Set” all resides within the SSD tier.

Caveats to this rule of thumb.

1. If a customer does a significant amount of deletions during the month, the delta may be smaller and result in an undersized SSD tier.

Mitigation: Review several months of full backup logs and average the delta.

2. If the environment’s Read/Write ratio is much higher than 70/30, then the delta from the backup multiplied by 3 may again result in  an undersized SSD tier.

Mitigation: Perform some investigation into your most critical workloads and validate or correct the assumption of multiplying by 3

3. This rule of thumb is for Server workloads, not VDI.

VDI Read/Write ratio is generally almost opposite to server, and around 30/70 Read/Write. However the SSD tier for VDI should be sized taking into account the benefits of VAAI/VCAI cloning and things like de duplication (for Memory and SSD tiers) which some products, like Nutanix offer.

Summary / Disclaimer

This rule of thumb works for me 90% of the time when designing Nutanix solutions, but your results may vary depending on the platform you use.

I welcome any feedback or suggestions of alternate sizing strategies which I will update the post with where appropriate.