Example Architectural Decision – Single Sign On Configuration for Single Site w/ Multiple vCenter Servers

Problem Statement

What is the most suitable deployment mode for vCenter Single-Sign On (SSO) in an environment where there is a single physical datacenter with multiple vCenter servers?

Requirements

1. The solution must be a fully supported configuration
2. Meet/Exceed RTO of 4 hours
3. Support Single Pane of glass management
4. Ability to scale for future vCenters and/or datacenters

Assumptions

1. All vCenter instances can access the same Authentication source (Active Directory or OpenLDAP)

2. The average number of authentications per second for each SSO instance is <30 (Configuration Maximum)

Constraints

1. vCenter servers reside in different network security zones within the datacenter

Motivation

1. Future proof the environment

Architectural Decision

1. Use “Multi-site” SSO deployment mode

2. Use one SSO instance per vCenter

3. Each SSO instance will reside with the vCenter on a Windows 2008 x64 R2 virtual machine in a vSphere cluster with HA enabled

4. Each SSO instance will use the bundled SQL database

5. (Optional) For greater availability, vCenter Heartbeat can be used to protect each SSO instance along with vCenter and the bundled SSO database

6. The Virtual Machine hosting vCenter/SSO will be 2vCPU and 10GB RAM to support vCenter/SSO/Inventory Service and an additional 2GB RAM to support the bundled SSO Database

7. Using the bundled SSO database ensures only a single vCenter Heartbeat deployment is required to protect each vCenter/SSO instance and reduce Windows licensing

Justification

1. To simplify the maintenance/upgrade process for vCenter/SSO as different versions of vCenter cannot co-exist with the same SSO instance

2. If “High Availability” mode is used it would prevent single pane of glass management

3. “High Availability” mode currently requires an SSL load balancer to be configured as well as manual intervention which can be complicated and problematic to implement and support

4. “Basic” mode prevents the use of Linked Mode which will prevent the management of the environment being single pane of glass

5. Where vCenter servers reside in different network security zones, Using Multi-site mode allows each SSO instance to use authentication sources that are as logically close as possible while supporting single pane of glass management. This should provide faster access to authentication services as each SSO instance is configured with Active Directory servers located in the same or logically closest network security zone/s.

6. If one instance SSO goes offline for any reason, it will only impact a single vCenter server. It will not prevent authentication to the other vCenter servers.

7. Reduce the licensing costs for Microsoft Windows 2008 by combining SSO and vCenter roles onto a single OS

Alternatives

1. Use “Basic” Mode, resulting in a standalone version of SSO for each vCenter server with no single pane of glass management

2. Use “High Availability” mode per vCenter

3. Use a shared “High Availability” mode for all vCenters in the datacenter

4. In any SSO configuration, Host the SSO database (per vCenter) on a Oracle OR SQL Server

5. Run SSO on a dedicated Windows 2008 instance with or without the SSO database locally

6. Run a single SSO instance in “Multi-Site” mode , use vCenter Heartbeat to protect SSO (including the database) and share the SSO instance with all vCenters

Implications

1. Where SSO is not protected by vCenter Heartbeat (optional), SSO for each vCenter is a Single point of failure where authentication to the affected vCenter will fail

2. “Multi-Site” mode requires the install-able version of SSO, which is Windows Only which prevents the use of the vCenter Server Appliance (VCSA) as it only supports basic mode.

Related Articles

1. vSphere 5.1 Single Sign On (SSO) deployment mode across Active/Active Datacenters

2. vSphere 5.1 Single Sign On (SSO) Architectural Decision Flowchart

3. Disabling Single Sign On – Dont Do It! – Michael Webster (VCDX#66) @vcdxnz001

CloudXClogo

 

 

vSphere 5.1 Single Sign On (SSO) Configuration – Architectural Decision flowchart

The below is the second architectural decision flowchart in my new series and covers a new feature in vSphere 5.1, Single Sign On.

There has been a lot of discussion around “Best Practices” for SSO, I have taken the approach of creating this flowchart with as many scenarios as possible.

I would recommend that you validate any configuration the flowchart results in is suitable for your environment prior to implementing into production.

The flowchart is designed to be used as a guide only, not a definitive decision making resource.

This also compliments some of my previous example architectural decisions which are shown in the related topics section below.

A special thanks to Michael Webster (VCDX#66) @vcdxnz001 & James Wirth (VCDX#83)@JimmyWally81 for their review and contributions to this flowchart.

SSO flowchart V1.0

Related Articles

1. Example Architectural Decision – SSO deployment mode over Active/Active Datacenters

2. vCenter Single Sign-On – Part 1: What is vCenter Single Sign-On?  – By Justin King @vCenterguy

3. vCenter Single Sign-on Part 2 – Deployment options – By Justin King @vCenterguy

4. vCenter Single Sign-on Part 3 – Availability  – By Justin King @vCenterguy

5. vCenter Single SIgn-On – Part 4: Pre Install Requirements – By Justin King @vCenterguy

6. Disabling vSphere 5.1 Single Sign-on – Long White Virtual Clouds – By Michael Webster @vcdxnz001

7. VMware KB: Multisite Single Sign-On deployment best practices

8. Where is the Best Practice Guide for SSO? | VMware Support Insider By 

Example Architectural Decision – vSphere 5.1 Single Sign On (SSO) deployment mode across Active/Active Datacenters

Problem Statement

What is the most suitable deployment mode for vCenter Single-Sign On (SSO) in an environment where there are two (2) physical datacenters running in an Active/Active configuration?

Requirements

1. The solution must be a fully supported configuration
2. Meet/Exceed RTO of 4 hours
3. Environment must support SRM failover between Datacenter A and Datacenter B where an entire datacenter is lost

Assumptions

1.Three (3) vCenter servers will be used, One (1) at Datacenter A and Two (2) at Datacenter B
2. Environment has Two (2) Production clusters (One per Datacenter), and One (1) vCloud Cluster at Datacenter B each with a dedicated vCenter
3. Stretched clusters are not used
4. All vSphere Infrastructure servers (including SSO) are protected by SRM and vSphere HA
5. Inter-site Metropolitan Area Network is high bandwidth (>10Gb) , low latency (<5ms) and highly available (99.999%)
6. The average number of authentications per second for each SSO instance is <30 (Configuration Maximum)

Constraints

1. The environment uses traditional agent based backup solution which may not meet RPO/RTO requirements

Motivation

1. Future proof the environment

Architectural Decision

1. Use “Multi-site” SSO deployment mode
2. Do not use SSO “High Availability” clusters
3. The Primary SSO server will be at Datacenter B
4. The remaining vCenter servers will be “Secondaries” and point to the Datacenter B Primary SSO instance
5. The each SSO instance will be on a dedicated Windows 2008 x64 R2 instance
6. Each SSO instance will use the bundled SQL database
7. (Optional) For greater availability , vCenter Heartbeat will be used to protect each SSO instance

Justification

1. The environment is being designed (where) possible to sustain a Metropolitan Area Network failure between the two (2) datacenters

2. If “High Availability” mode is used, at least one (1) vCenter would be accessing SSO across the MAN link which introduces an unnecessary dependency on the MAN links

3. “High Availability” currently requires manual intervention which can be complicated and problematic

4. “Basic” mode prevents the use of Linked Mode which will make management of the environment more difficult

5. Using Multisite mode allows faster access to authentication services as each SSO instance is configured with Active Directory servers located at the same datacenter.

6. Multisite mode is required for the use of Linked-Mode and Linked Mode will  make day to day management easier

7. If one instance SSO goes offline for any reason, this will not impact production virtual machines. It will simply prevent any authentication to the affected vCenter server.

8. Having the SSO Primary at Datacenter B ensures only traffic from one vCenter (Datacenter A vCenter) traverses the MAN link as the third vCenter (for vCloud Director) is at Datacenter B

9. In the event of Datacenter B having a full datacenter wide failure for any reason, the Primary SSO instance being offline will not impact the management of Datacenter A OR the ability for the environment being recovered by SRM.

10. During an SSO upgrade, multiple vCenter’s cannot co-exist and using a centralized (or shared) SSO instance would overly complicate the upgrade process and lead to extended impact to the vSphere environments.

Alternatives

1. Use “Basic” Mode, resulting in a standalone version of SSO for each vCenter server

2. Use “High Availability Cluster” (Shared the same SSO database and identity sources) with one SSO server per physical datacenter

3. Use “Multisite” deployment with “High Availability Clusters” per datacenter

4. Host SSO database on a SQL Server

5. Run SSO on the vCenter server with or without the SSO database locally

6. Run a single SSO instance shared by all three (3) vCenters and use vCenter Heartbeat running across the MAN to protect SSO

Implications

1. Without a “High Availability Cluster” or SSO being protected by vCenter Heartbeat at each datacenter, the SSO for each site is a Single point of failure where authentication to the affected vCenter will fail

2. In the event of one (1) SSO server failing at Datacenter A, the SSO role does not failover to Datacenter B, or vice versa. In this case, All authentication requests on the site where SSO has failed, will fail.

3. Requires the installable version of SSO, which is Windows Only. The use of the vCenter Server Appliance (VCSA) is not available.

4. Additional Windows 2008 licenses are required for the SSO servers

Related Articles

1. Disabling Single Sign On – Dont Do It! – LongWhiteClouds

2. vSphere 5.1 Single Sign On (SSO) Configuration – Architectural Decision flowchart

I would like to Thank Michael Webster VCDX#66 (@vcdxnz001) for his contribution to this example architectural decision.

CloudXClogo