The value of the hyperscaler + hypervisor model

Public cloud offerings for “hyperscalers” such as AWS EC2, Microsoft Azure & Google GCP provide a lot of value when it comes to be able to stand up and run virtual workloads in a timely manner and provide various capabilities to create globally resilient solutions.

All of these offerings also boast a varying/wide range of native services which can compliment or replace services running in traditional virtual machines.

As I’ve previously stated in a post from August 2022, Direct to Cloud Value – Part 1, the hyperscalers have two major advantages customers can benefit from:

  1. A Well understood architecture
  2. Global availability

Designing, deploying and maintaining “on-premises” infrastructure on the other hand is often far less attractive from a time to value perspective and requires significant design efforts by highly qualified, experienced (and paid) individuals in order to get anywhere close to the scalability, reliability and functionality of the hyperscalers.

On-premises infrastructure may not be cost effective for smaller customers/environments who don’t have the quantity of workloads/data to make it cost effective, so “native” public cloud solutions at a high level are often a great choice for customers.

The problem for many customers is they’re established businesses with a wide range of applications from numerous vendors, many of which are not easy to simply migrate to a public cloud provider.

Workload refactoring is often a time consuming and complex task which is not always able to be achieved in a timely manner, and in many cases not at all.

Customers also rarely have the luxury of starting from and/or just building a greenfield environment due to the overall cost and/or the requirement to get a return on investment (ROI) from existing infrastructure.

Customers often have the requirement to burst during peak periods which isn’t something easily achievable on-premises. Customers often need to significantly oversize their on-premises infrastructure just to be able to support end of month, quarter or peak periods such as “Black Friday” for retailers.

This oversizing does help mitigate risks and deliver business outcomes, but it comes at a high cost (CAPEX).

Enter the “Hyperscaler + Hypervisor” model.

The hyperscaler + hypervisor model is where the hyperscaler (AWS/Azure/Goolgle) provides bare metal servers (a.k.a instances) where a hypervisor (in the above example, VMware ESXi) is running along with Virtual SAN (a.k.a “vSAN”) to provide the entire VMware technology stack to run Virtual Machines (VMs).

Nutanix has a similar offering called “Nutanix Cloud Clusters” or “NC2” using their own hypervisor “AHV”.

Both the VMware & Nutanix offerings gives the same look/feel to their customers as they have today on-premises.

The advantages of the hyperscaler + hypervisor model are enormous from both a business and technical perspective, the following are just a few examples.

  • Ease of Migration

A migration of VMware based workloads from an existing on-premises environment can be achieved using a variety of methods including VMware native tools such HCX as well as third party tools from backup vendors such as Commvault without having to refactor workloads.

This is achieved without the cost/complexity and delay of refactoring workloads.

  • Consistent look and feel

The Hyperscaler + hypervisor options provide customers access to the same management tools they’re used to on-premises meaning there is minimal adjustment required for I.T teams.

  • Built-in Cloud exit strategy / No Cloud Vendor “Lock in”

The hypervisor layer allows customers to quickly move from one hyperscaler to another again without refactoring, giving customers real bargaining power when it comes to negotiating commercial arrangements.

It also enables a move off public cloud back to on-premises.

  • Faster Time to value

The ability to stand up net new environments typically within a few hours gives customers the ability to respond to unexpected situations as well as new projects without the time/complexity of procurement and designing/implementing new environments from the ground up.

One very important value here is the ability to respond to critical situations such as ransomware by standing up an entirely isolated net new infrastructure to restore known good data. This is virtually impossible to do on-premises.

  • Lower Risk

In the event of a significant commercial/security/technical issue, a hyperscaler + hypervisor environment can be scaled up, migrated to a new environment/provider or isolated.

This model also mitigates against the delays caused by under-sizing or failure scenarios where new hardware needs to be added as this can occur typically within an hour or so as opposed to days/weeks/months.

As in the next example, workloads can simply be “lifted and shifted” minimising the number of changes/risks involved with a public cloud migration.

In the event of hardware failures, new hardware can be added back to the environment/s straight away without waiting for replacement hardware to be shipped/arrive and be installed. This greatly minimises the chance of double/subsequent failures causing an impact to the environment.

In the case of a disaster such a region failure, a new region can be scaled up to restore production whereas standing/scaling up a new on-prem environment is unlikely to occur in a timely manner.

  • Avoiding the need to “re-factor” workloads

Simply lifting and shifting workloads “as-is” on the same underlying hypervisor ensures the migration can occur with as few dependancies (and risks) as possible.

  • Provides excellent performance

The hardware provided by these offerings varies but often are all NVMe storage with latest or close to latest generation CPU/Memory, ensuring customers are not stuck with older generation hardware.

Having all workloads share a pool of NVMe storage also avoids the issue where some instances (VMs) are assigned to a lower tier of storage due to commercial cost constraints which can have significant downstream effects on other workloads/applications.

The all NVMe option in hyperscalers + hypervisor solutions becomes cost effective due to the economies of scale and elimination of “Cloud waste” which I will discuss next.

In many cases customers will be moving from a multiple year old hardware & storage solutions, simply having an all NVMe storage layer can reduce latency and subsequently make more efficient use of CPU/Memory often resulting in significant performance improvements let alone newer generation CPUs.

  • Economies of scale

In many cases, purchasing on a per instance (VM) basis may be attractive in the beginning, but when you reach a certain level of workloads, it makes more sense to buy in bulk (i.e.: A bare metal instance) and run the workloads on top of a hypervisor.

This gives the customer the benefit of the hypervisors ability to efficiently and effectively oversubscribe CPU and with a hyper-converged (HCI) storage layer (Virtual SAN a.k.a vSAN or Nutanix AOS) customers benefit from the native data reduction capabilities such as Compression, Deduplication and Erasure Coding.

  • Avoids native cloud instance constraints a.k.a “Cloud waste”

Virtual Machine “right-sizing” is to this day one of the most under-rated tasks but this can provide not only lower cost, but significant performance improvements for VMs. Cloud Waste occurs when workloads are forced into pre-defined instance sizes where small amounts of resources such as vCPUs or vRAM are assigned to the VM, but not required/use.

When we have the hypervisor layer, instance sizes can be customised to the exact requirements and eliminate cloud waste which I’ve personally observed in many customer environments to be in the range of 20-40%.

Credit: Steve Kaplan for coining the term “Cloud Waste”.

  • Increased Business Continuity / Disaster Recovery options

The cost/complexity involved with building business continuity and disaster recovery (BC/DR) solutions often lead to customers having to accept and try to mitigate significant risks to their businesses.

The hyperscaler + hypervisor model provides a number of options to have very cost effective BC/DR solutions including across multiple providers to mitigate against large global provider outages.

  • An OPEX commercial model

The ability to commit to a monthly minimum spend to get the most attractive rates while having the flexibility to burst when required (albeit at a less attractive price) means customers don’t have to try and fund large CAPEX projects and have the ability to scale in a “just in time” fashion.

Cost

This sounds to good to be true, what about cost?

On face value, these offerings can appear expensive compared to on-premises equivalents, but from the numerous assessments I’ve conducted I am confident the true cost is closer to or even cheaper than on-premises especially when a proper Total Cost of Ownership (TCO) is performed.

Compared with “native cloud” i.e.: Running workloads without the hypervisor layer, the hyperscaler + hypervisor solution will typically save customers 20-40% while providing equal or better performance and resiliency.

One other area which can make costs higher than necessary is a lack of optimisation with the workloads. I highly recommend for both on-premises and hyperscaler models that customers engage an experienced architect to review their environment thoroughly.

The performance benefits of a right sizing exercise are typically be significant AND it saves valuable IT resources (CPU/RAM). It also means less hardware is required to achieve the same or even a better outcome and therefore lowering costs.

Summary

The hyperscaler + hypervisor model has many advantages both commercially and technically and with the ease of setup, migration to and scaling in public cloud, I expect this model to become extremely popular.

I would strongly recommend anyone looking at replacing their on premises infrastructure in the near future do a thorough assessment of these offerings against their business goals.

End-2-End Enterprise Architecture (@E2EEA) has multiple highly experienced and certified staff at the highest level with both VMware (VCDX) and Nutanix (NPX) technologies and can provide expert level services to help you assess the hyperscaler + hypervisor options as well as design and deliver the solution.

E2EEA can be reached at sales@e2eea.com

Nutanix X-Ray Benchmarking tool – Extended Node Failure Scenario

In the first part of this series, I introduced Nutanix X-Ray benchmarking tool which has been designed very differently to traditional benchmarking tools as the performance of the app is the control and the variable is the platform,not the other way around.

In the second part, I showed how Nutanix AHV & AOS could maintain the performance while utilising snapshots to achieve the type of recovery point objective (RPO) that is expected in production environments, especially with business critical workloads whereas a leading hypervisor and SDS platform could not.

In this part, I will cover the Extended Node Failure Scenario in X-Ray and again compare Nutanix AOS/AHV and a leading hypervisor and SDS platform in another real world scenario.

Let’s start by reviewing what the description of the X-ray Extended node failure scenario.

XrayExtendedNodeFailureScenario

I really like that X-ray has a scenario which shows a simulated node failure as this is bound to happen regardless of the platform you choose, and with hyperconverged platforms the impact of a node failure is arguably higher than traditional 3-tier as the nodes contain some data which needs to be recovered.

As such, it is critical before choosing a HCI platform to understand how it behaves in a failure scenario which is exactly what this scenario demonstrates.

XrayNodeFailureComparison

Here we can see the impact on the performance of the surviving VMs following the power being disconnected via the out of band management interface.

The Nutanix AOS/AHV platform continues to run at a very steady rate, virtually without impact to the VMs. On the other hand we see that after 1 hour the other platform has a high impact with significant degradation.

This clearly shows the Acropolis Distributed Storage Fabric (ADSF) to be a superior platform from a resiliency perspective, which should be a primary consideration when choosing a platform for any production environment.

Back in 2014, I highlighted the Problems with RAID and Object Based Storage for data protection and in a follow up post I discussed how Nutanix Acropolis Distributed Storage Fabric (ADSF) compares with traditional SAN/NAS RAID and hyper-converged solutions using Object storage for data protection.

The above results clearly demonstrate the problems I discussed back in 2014 are still applicable to even the most recent versions of a leading hypervisor and SDS platform. This is because the problem is the underlying architecture and bolting on new features is at best masking the constraints of the original architectural decision which has proven to be significantly flawed.

This scenario clearly demonstrates the criticality of looking beyond peak performance numbers and conducting a thorough evaluation of a platform prior to purchase as well as comprehensive operational verification prior to moving any platform into production.

Related Articles:

Nutanix X-Ray Benchmarking tool Part 1 – Introduction

Nutanix X-Ray Benchmarking tool Part 2 -Snapshot Impact Scenario

Nutanix X-Ray Benchmarking tool – Snapshot Impact Scenario

In the first part of this series, I introduced Nutanix X-Ray benchmarking tool which has been designed very differently to traditional benchmarking tools as the performance of the app is the control and the variable is the platform,not the other way around.

This is done by generating realistic IO patterns (e.g.: Not 100% 4k read) and then performing functions against the platform to see how the control (the VM application performance) is impacted by the underlying platforms functionality.

A great example of this is performing snapshots as the first step in a space efficient backup solution.

X-Ray has a built in test which generates an OLTP workload which is ran for 8 hours which for an all flash platform generates 6000 IOPS across the database and 400 IOPS for the logs. The scenario is detailed in the X-Ray report shown below.

XraySnapshotImpactDescription

The Snapshot impact scenario is then ran against multiple platforms and using the Analysis functionality within X-ray. we can generate a report which overlays the results from multiple platforms.

The below example is GA Acropolis Hypervisor (AHV) on AOS 5.1.1 verses a leading hypervisor and SDS platform showing the snapshot impact scenario.

XraySnapshotImpact

Each of the red lines indicate a snapshot and what we observe is the performance of both platforms remains consistent until the 10th snapshot (shown below) where the Nutanix platform continues without impact and the leading hypervisor and SDS platform starts degrading significantly.

XraySnapshotImpactSnap10

In the real world, customers use the intelligent features of storage, SDS or hyper-converged platforms but rarely test how this functionality works prior to purchasing. This is because it’s difficult and time consuming to do so.

Nutanix X-Ray tool makes the process of validating a platforms performance under real world scenarios a quick and easy process and provides automatically generated reports where accurate comparisons can be made.

What this example shows is that while both platforms could achieve the required performance without snapshots, only Nutanix AHV & AOS could maintain the performance while utilising snapshots to achieve the type of recovery point objective (RPO) that is expected in production environments, especially with business critical workloads.

As part of the Nutanix Solutions and Performance engineering organisation, I can tell you that the focus for Nutanix is real world performance, using data reduction, leveraging snapshots, mixing workloads and testing a large scale.

In upcoming posts I will show more examples of X-Ray test scenarios as well as comparisons between GA Acropolis Hypervisor (AHV) & AOS 5.1.1 verses a leading hypervisor and SDS platform.

Related Articles:

Nutanix X-Ray Benchmarking tool Part 1 – Introduction

Nutanix X-Ray Benchmarking tool Part 3 – Extended Node Failure Scenario